LEADING EDGE TECHNOLOGIES
FOR LOW VOLUME ROADS

David Jones, PhD
University of California Pavement Research Center
Davis, California

C-TEP Annual Western Canada Pavement Workshop
Edmonton, January 2014
Overview

- Introduction

- Unpaved road chemical treatment
 - Current practice
 - New guide
 - Web-based selection tool

- Full-depth reclamation
 - Practice review and needs identification
 - Current research
 - Interim findings

- Summary
Introduction

- Low-volume road problems
 - Unpaved
 - Fines loss (dust)
 - Wet weather passability
 - Safety and environment
 - Paved
 - Design life
 - Poor, unsafe ride quality
 - Expensive maintenance/reconstruction
Introduction

- Recommended approach
 - Unpaved
 - Focus on addressing key issues
 - Building the best possible road
 - Use chemical treatments (or seal) to keep a good road good
 - Monitor performance
 - Justify through extended life of road and reduced maintenance
 - Paved
 - Consider “unpaving” for low traffic
 - Consider full-depth reclamation with new surface for other roads
Overview

- Introduction

- Unpaved road chemical treatment
 - Current practice
 - New guide
 - Web-based selection tool

- Full-depth reclamation
 - Practice review and needs identification
 - Current research
 - Interim findings

- Summary
Unpaved Road Chemical Treatment

- Two main categories of additive
 - Surface stabilizers to control fines loss (dust control)
 - Full-depth stabilizers for improving passability, preserving material, and fines preservation (dust control)

- Additive selection
 - Currently based on:
 - Experience
 - US Forest Service (1999) and other guides
 - Marketing by suppliers
Current Practice

- **1999 US Forest Service Guide**

<table>
<thead>
<tr>
<th>Dust Palliative</th>
<th>Traffic Volumes, Average Daily Traffic</th>
<th>Surface Material</th>
<th>Climate During Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Light <100</td>
<td>Medium 100 to 250</td>
<td>Heavy >250 (1)</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Magnesium Chloride</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Petroleum</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Lignin</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Tall Oil</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>x ✓</td>
</tr>
<tr>
<td>Vegetable Oils</td>
<td>✓ ✓</td>
<td>x</td>
<td>x ✓</td>
</tr>
<tr>
<td>Electro-chemical</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Synthetic Polymers</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>x ✓</td>
</tr>
<tr>
<td>Clay Additives (6)</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>x ✓</td>
</tr>
</tbody>
</table>

Note: ✓ indicates acceptable, X indicates unacceptable.
New Selection Guide

- 1999 US Forest Service Guide
- New developments since 1999
 - More products (±200 in USA)
 - More/refined categories
 - Dust control vs. stabilization
 - Additional experience
 - Documented field trials
 - Requests for more detailed guidance, preferably with ranking
2013 FHWA Guide

- Based on the concept of “Keep a good road good”
Keep a Good Road Good
Based on the concept of “Keep a good road good”

10-step process for selecting a treatment
- Manual or web-based tool
- Uses tables and simple formula to rank treatments
- Tables based on objective, traffic, climate, and material properties

Requires basic testing and engineering judgment
Additive Selection Table

<table>
<thead>
<tr>
<th>Additive Category/Sub-Category</th>
<th>Traffic Average Daily Traffic</th>
<th>Climate Humidity/Storm Intensity</th>
<th>Plasticity Index</th>
<th>Wearing Course Material (%) Passing #200</th>
<th>Key to Colors and Explanation Notes in Selection Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><100</td>
<td>100-250</td>
<td>>250^</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water and Water plus Surfactant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>Not cost effective as a long-term fines preservation strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water + surfactant</td>
<td>Not cost effective as a long-term fines preservation strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water absorbing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>50^</td>
<td></td>
</tr>
<tr>
<td>Magnesium chloride</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium chloride brine</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Non-Petroleum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycerin based</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lignosulfonate</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molasses/sugar</td>
<td>1</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant oil</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tall oil pitch resin</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Petroleum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt emulsion</td>
<td>1</td>
<td>7</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base oil</td>
<td>1</td>
<td>7</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum resin</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthetic fluid</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthetic fluid + binder</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthetic Polymer Emulsion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthetic polymer</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conc. Liquid Stabilizer</td>
<td>7</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay Additive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentonite</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key to Colors and Explanation Notes in Selection Charts:
- **Red**: Significant influence on performance
- **Orange**: Some influence on performance
- **Green**: No significant influence on performance

Notes and Explanations:
- **1**: Cars and trucks at higher speeds may break surface crust and accelerate washboarding and raveling, if so more frequent rejuvenation will be required.
- **2**: More than 20 days with less than 40% relative humidity.
- **3**: High intensity storms.
- **4**: Likely to leach out and/or down into lower layers during storm events.
- **5**: Soaked California Bearing Ratio (CBR) and abrasion resistance must be checked / increased with increasing number of trucks to ensure all-weather passability.
- **6**: Materials have little or no effective binder content and are prone to washboarding and raveling. Treatments may leach down to road surface.
- **7**: May become slippery when wet.
- **8**: High fines content may require higher application rates to be effective.
- **9**: Requires a minimum humidity level to perform effectively.
- **10**: May leach down into layer, but dry back of the material plus a light water spray / rejuvenation will return it to surface.
- **11**: Generally not suitable as a spray-on application. A “skin” can form on the surface which is damaged by traffic.
- **12**: Requires frequent rejuvenation.
- **13**: Relatively high initial product cost price, but life-cycle cost could be lower than other treatments.
Traffic and Climate

<table>
<thead>
<tr>
<th>Additive Category/Sub-Category</th>
<th>Traffic Average Daily Traffic</th>
<th>Climate Humidity/Storm Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><100</td>
<td>100-250<sup>1</sup></td>
</tr>
<tr>
<td>Water and Water plus Surfactant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>Not cost effective as a long-term fines preservation strategy</td>
<td></td>
</tr>
<tr>
<td>Water + surfactant</td>
<td>Not cost effective as a long-term fines preservation strategy</td>
<td></td>
</tr>
<tr>
<td>Water absorbing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Magnesium chloride</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sodium chloride brine</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Organic Non-Petroleum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycerin based</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lignosulfonate</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Molasses/sugar</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Plant oil</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Tall oil pitch resin</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Organic Petroleum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt emulsion</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Base oil</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Petroleum resin</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Synthetic fluid</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Synthetic fluid + binder</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Synthetic Polymer Emulsion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthetic polymer</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Concentrated Liquid Stabilizer</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Clay Additive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentonite</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
2013 FHWA Guide

- www.ucprc.ucdavis.edu/dustcontrol
- www.roaddustinstitute.org
Overview

- Introduction
- Unpaved road chemical treatment
 - Current practice
 - New guide
 - Web-based selection tool
- Full-depth reclamation
 - Practice review and needs identification
 - Current research
 - Interim findings
- Summary
Introduction

- FDR-FA introduced to California in 2000
- Pilot project in 2001
- International research focus
- California research focus
 - Thick AC "evolved roads"
 - Closure limitations
 - Mix & structural design
 - Construction factors
Introduction

- Asphalt concrete (50mm)
- “Oil”
- Subgrade/Base (Old gravel road)
Introduction
UCPRC Research Focus

- Recycling/sustainability strategic initiative
- Phase 1: FDR-NS and FDR-FA study
 - Literature review
 - Mechanistic sensitivity analysis
 - Pilot project assessment
 - Accelerated pavement testing
 - Laboratory study
 - Preliminary guidelines
- Phase 2a: FDR-PC and FDR-EE
- Phase 2b: PDR-FA and PDR-EE
 - As for Phase 1
 - ME performance models
 - Comprehensive guidelines for CA
Pilot Project Assessment

- Key findings on Project Selection
 - Drainage/land use
Pilot Project Assessment

Rice field

Distance (m)

E_{FA} (MPa)

Jun-06

May-07

Nov-06

Nov-07
Field Testing: LTPP

- Key findings on construction
 - Pre-pulverization
 - Equipment problems
 - Training / supervision
Field Testing: LTPP

- Key findings on construction
 - Pre-pulverization
 - Equipment problems
 - Training / supervision
 - Temperatures
Field Testing: LTPP

- Key findings on construction
 - Pre-pulverization
 - Equipment problems
 - Training / supervision
 - Temperatures
 - Compaction
Pilot Project Assessment

- Key findings on construction
 - Pre-pulverization
 - Equipment problems
 - Training / supervision
 - Temperatures
 - Compaction moisture
 - Compaction
Pilot Project Assessment

- Key findings on construction
 - Pre-pulverization
 - Equipment problems
 - Training / supervision
 - Temperatures
 - Compaction moisture
 - Compaction
 - Quality control
Field Testing: LTPP
Field Testing: LTPP
Research Implementation: Phase 1

- Final report documenting entire study
- Guideline for California
 - Project investigation
 - Mix design
 - Structural design
 - Construction
- FDR and FDR-FA chapters in Highway Design Manual and Standard Specifications
- Tech transfer on projects
 - Implementation decision at District and county level
Phase 2 FDR Study

- Extend Phase 1 study to include:
 - Additional work on FDR-NS
 - FDR-PC
 - FDR-EE
 - PDR-FA (Control)
- Prepare single guideline on FDR (specific to California)
- Develop input parameters for ME design for rehabilitation using FDR
Phase 2 FDR Study

- **Status**
 - Field sections identified and monitoring started (visual and FWD)
 - APT test track constructed
 - APT started
 - Laboratory testing started
 - AMPT included in testing program
Phase 2 FDR Study Test Track
Phase 2 FDR Study Test Track
Phase 2 Interim Results

- FDR-NS satisfactory for low-volume roads
- Excellent performance on FDR-FA and FDR-PC
- Poor performance on FDR-EE
 - Construction and curing issues

<table>
<thead>
<tr>
<th>Phase</th>
<th>Half Axle Wheel Load (kN)</th>
<th>Number of Repetitions</th>
<th>Rut Depth (mm)</th>
<th>Cracking (m/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FDR-NS</td>
<td>FDR-FA</td>
<td>FDR-NS</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>300,000</td>
<td>300,000</td>
<td>12.2</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>200,000</td>
<td>200,000</td>
<td>16.9</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>165,000</td>
<td>250,000</td>
<td>22.0</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>-</td>
<td>250,000</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>665,000</td>
<td>1,000,000</td>
<td></td>
</tr>
</tbody>
</table>

ESALs¹: 4,430,591, 492,155
ESALs to failure: 4,430,591, 17,772,552

Equivalent Standard Axle Loads, calculated by (axle load/18,000)⁴.²
Overview

- Introduction
- Unpaved road chemical treatment
 - Current practice
 - New guide
 - Web-based selection tool
- Full-depth reclamation
 - Practice review and needs identification
 - Current research
 - Interim findings
- Summary
Summary: Chemical Treatment

- Huge selection of additives
- There are no “wonder” products
- Select treatments based on:
 - Problem/objective
 - Traffic, climate and materials
 - Cost-benefit
 - Vendor credibility
- Understand performance
- Apply and maintain appropriately
- Testing is not expensive, and will save money
Summary: FDR

- FDR is a very appropriate rehabilitation technology (state, county and city)
- Use continues to grow in the US while specifications are refined
- Long-term performance is acceptable
- Good design, construction and training is essential
Thank you!

djjones@ucdavis.edu www.ucprc.ucdavis.edu
(djones.consult@gmail.com)
Chemical Treatment Selection

- Step 1: Review local experience
- Step 2: Understand materials
- Step 3: Set objective for treatment
- Step 4: Select traffic and climate categories
- Step 5: Select plasticity index and fines content
- Step 6: Consider road geometry
- Step 7: Calculate performance / rank for selection
Selection Based on Performance

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Traffic</th>
<th>Climate</th>
<th>PI</th>
<th>Fines</th>
<th>Perf</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>125</td>
<td>Damp</td>
<td>7</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>200</td>
<td>NS</td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Mag. chloride</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Glycerin based</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Lignosulfonate</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Molasses/sugar</td>
<td>50</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>53</td>
<td>NS</td>
</tr>
<tr>
<td>Plant oil</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Tall oil</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Asphalt emulsion</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Base/mineral oil</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Petroleum resin</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Synthetic fluid</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Synthetic polymer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Conc. Liquid Stabilizer</td>
<td>50</td>
<td>7</td>
<td>50</td>
<td>7</td>
<td>114</td>
<td>NS</td>
</tr>
<tr>
<td>Bentonite</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td>7</td>
<td>59</td>
<td>NS</td>
</tr>
</tbody>
</table>
Selection Based on Performance

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Traffic</th>
<th>Climate</th>
<th>PI</th>
<th>Fines</th>
<th>Perf</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>125</td>
<td>Damp</td>
<td>7</td>
<td>8</td>
<td>200</td>
<td>NS</td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Mag. chloride</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>Glycerin based</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Lignosulfonate</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Molasses/sugar</td>
<td>50</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td>102</td>
<td>NS</td>
</tr>
<tr>
<td>Plant oil</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Tall oil</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Asphalt emulsion</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Base/mineral oil</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Petroleum resin</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Synthetic fluid</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Synthetic polymer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Conc. Liquid Stabilizer</td>
<td>50</td>
<td>7</td>
<td>50</td>
<td>50</td>
<td>157</td>
<td>NS</td>
</tr>
<tr>
<td>Bentonite</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td>1</td>
<td>53</td>
<td>NS</td>
</tr>
</tbody>
</table>
Chemical Treatment Selection

- Step 1: Review local experience
- Step 2: Understand materials
- Step 3: Set objective for treatment
- Step 4: Select traffic and climate categories
- Step 5: Select plasticity index and fines content
- Step 6: Consider road geometry
- Step 7: Calculate performance / rank for selection
- Step 8: Understand environmental impacts
- Step 9: Understand other limitations
- Step 10: Do performance testing