Jean-Martin Croteau, P.Eng.
Manager, Quality Systems & Technical Development
Works Alberta Ltd.

Thin Hot Mix Asphalt Surfacing System
Presentation Outline

- Expected characteristics of surfacing course
- Thin hot mix asphalt surfacing systems
- Dense graded mixtures
- Gap graded mixtures
- Tacking/bonding techniques
- Surface characteristics of thin surfacing course
- Objectives & constraints
Expected Characteristics

- **Safety**
 - adequate friction
 - absence of rutting
 - reduce water spray
 - reduce glare
 - facilitate visibility

- **Comfort**
 - good smoothness
 - reduce rolling noise

- **Performance**
 - resist aggression
 - deicing agent and winter sand
 - snow plow blades
 - seal structure
Thin Hot Mix Asphalt Surfacing Systems

- **Thickness**
 - NAPA - 12.5 mm to 37.5 mm

- **Systems available**
 - dense graded: Marshall or Superpave
 - gap graded: SMA or Novachip
 - low noise HMA systems

- **Usages**
 - preventive maintenance
 - surface characteristics restoration
 - rehabilitation
 - construction
Gap Graded vs. Dense Graded

Stone Matrix Asphalt SMA

Conventional Hot Mix Asphalt HMA
Gap Graded vs. Dense Graded
Stone mastic asphalt

Fine-graded mix

Coarse-graded mix

Gradations

Sieve size raised to 0.45 power

% Passing

Max. density line

NMAS

Porous asphalt

PCS

NMAS

8/6 mm SMA

50 mm SMA
Dense Graded Mixtures

- Conventional technology
 - *mix-design development*
 - *Superpave or Marshall*
 - *smaller NMAS (Nominal Maximum Aggregate Size)*
 - *typically < 10 mm*

- Surface characteristics
 - *smooth surface*
 - *well suited for urban and suburban settings*
 - *reduction in rolling noise*
 - *uniform surface texture*
Dense Graded Mixtures

• Engineering of dense graded small size NMAS
 o *bitumen – neat and polymer-modified asphalt*
 o *mineral aggregate - high crushed count*
 o *NMAS: 4.75, 5.0, 6.3 and 9.5 mm*

• Mix-design method
 o *Superpave or Marshall*
 o *performance-based rutting criteria (if required)*

• Application
 o *require tack-coating*
 o *thickness applied ~ 20 to 30 mm*
 o *placed using conventional equipment*
Expected Mixture Properties

<table>
<thead>
<tr>
<th>NMAS</th>
<th>12.5 mm</th>
<th>9.5 mm</th>
<th>6.3 mm</th>
<th>4.75 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency</td>
<td>Alabama</td>
<td>North Carolina</td>
<td>Nevada</td>
<td>Utah</td>
</tr>
<tr>
<td>Gradation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sieve Size</td>
<td>% Passing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 mm</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 mm</td>
<td>90 - 100</td>
<td>85 - 100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>9.5 mm</td>
<td><90</td>
<td>60 - 80</td>
<td>85 - 100</td>
<td>90 - 100</td>
</tr>
<tr>
<td>4.75 mm</td>
<td>28 - 38</td>
<td>50 - 75</td>
<td><90</td>
<td>80 - 100</td>
</tr>
</tbody>
</table>

Mix Design

<table>
<thead>
<tr>
<th></th>
<th>N<sub>design</sub></th>
<th>Design Air Voids</th>
<th>%VMA</th>
<th>%VFA, range</th>
<th>Asphalt Content</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
<td>3 - 6</td>
<td>15.5 min</td>
<td>70 - 80</td>
<td>5.5 min</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>3.5</td>
<td>12 - 22</td>
<td>70 - 78</td>
<td>4.6 - 5.6</td>
</tr>
<tr>
<td></td>
<td>50 to 122<sup>3</sup></td>
<td>4.0</td>
<td>16 min</td>
<td>50 - 80</td>
<td>5.0 - 8.0</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>4.0</td>
<td></td>
<td>50</td>
<td>6.0 - 7.5</td>
</tr>
<tr>
<td></td>
<td>50/65<sup>4</sup></td>
<td>4.0 - 7.0</td>
<td></td>
<td>50/75<sup>4</sup></td>
<td>6.4 min</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50/75<sup>4</sup></td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Low or Medium Volume/High Volume
2. Carbonate/Other Aggregates
3. N_{design} based on traffic level
Front Street Paving in Dawson City
September 21, 2009
Globe & Mail

Why not pave the streets with gold? Oh, right
Dawson City, Yukon
Gap Graded Mixtures

• Heavy duty surfacing system
 o improve resistance to permanent deformation
 ➢ strong aggregate interlock
 o excellent durability
 ➢ binder-rich material

• Premium surface characteristics
 o excellent visibility
 ➢ more water held within the mixture surface texture
 o reduction in rolling noise
 ➢ surface texture is deep and uniform
SMA – 0/6 mm

- Engineering of SMA 0/6 mm
 - bitumen - polymer-modified
 - mineral aggregate - high crushed count

- Mix-design method
 - mainly gyratory compactor
 - performance-based rutting criteria - wheel tracking device

- Application
 - require tack-coating
 - minimum thickness applied ~ 20 mm
 - placed using conventional equipment
Rut Testing Device
Typical Mixture Properties

<table>
<thead>
<tr>
<th>Criteria</th>
<th>JMF</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitumen content/volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG70-28P</td>
<td>5.8 %</td>
<td>-</td>
</tr>
<tr>
<td>V_{be}</td>
<td>12.6 %</td>
<td>-</td>
</tr>
<tr>
<td>Volumetric properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{ini} (10 Gyr.)</td>
<td>14.5%</td>
<td>≥ 11.0 %</td>
</tr>
<tr>
<td>N_{des} (80 Gyr.)</td>
<td>5.5 %</td>
<td>4.0 to 7.0 %</td>
</tr>
<tr>
<td>N_{max} (200 Gyr.)</td>
<td>2.4 %</td>
<td>≥ 2.0 %</td>
</tr>
<tr>
<td>VMA</td>
<td>18.1 %</td>
<td>17.0 %</td>
</tr>
<tr>
<td>VCA</td>
<td>38.2 %</td>
<td>$< 44.8^*$</td>
</tr>
<tr>
<td>Moisture resistance & draindown properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSR</td>
<td>92.8 %</td>
<td>> 70.0 %</td>
</tr>
<tr>
<td>Draindown</td>
<td>0</td>
<td>< 0.3 %</td>
</tr>
</tbody>
</table>
Rutting Resistance Characteristics

<table>
<thead>
<tr>
<th>Criteria</th>
<th>JMF</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 cycle @ 60°C</td>
<td>4.5 %</td>
<td>< 10 %</td>
</tr>
<tr>
<td>3,000 cycle @ 60°C</td>
<td>5.2 %</td>
<td>< 20 %</td>
</tr>
<tr>
<td>30,000 cycle @ 60°C</td>
<td>7.3 %</td>
<td>-</td>
</tr>
</tbody>
</table>
After Construction
One Year Later
Surface Texture

1 week

1 year
Four Years Later
Novachip

Novachip is a thin pavement surfacing system which involves the embedment of a gap-graded HMA in an uniformed thick bond coat. The bond-coat migrates upwards one third of the thickness of the HMA resulting in an excellent bond with the underlying surface.
Novachip

- Total Depth: 15 mm
- Agg. Max. Size: 10 mm
- Bond-Coat Height: 5 mm
Novachip
Novachip

- **Materials**
 - *bitumen – preferably polymer-modified*
 - *mineral aggregate – high crushed count*
 - *bond coat – polymer-modified emulsion*

- **Mix-design method**
 - *strong focus on film thickness*

- **Types** - 0/6 mm, 0/10 mm & 0/14 mm

- **Application**
 - *thick polymer-modified bond coat*
 - *minimum thickness applied ~ 15 mm*
 - *placed using specific equipment*
HMA is placed in a single pass with a specialized paver that combines the functions of a distributor and HMA lay down machine.

Once place the HMA is seated in bond-coat using steel rollers.
Tacking/Bonding Techniques

• Provide lamination i.e. bonding between two layers of HMA
 - pavement structural design aspects
 - essential for long term performance
 - prevent ingress of water

• Facilitate placement for thin HMA
 - anchors mix during lay down and compaction
Paving

Conventional Paving Thickness
Asphalt Institute Recommendation
3 to 4 x NMAS
"f_{substrate} " may be influence by the type, quality and performance of tack/bond coat

\[f_{screed} < f_{substrate} \]
Tacking/Bonding Techniques

- Novachip like system
Tacking/Bonding Techniques

- Trackless tack-coat
Tacking/Bonding Techniques

- SAMIs
Fibre-Reinforced Membrane

- HMA
- Protective Chippings
- Binder & Fibres
- Substrate

Fibre-reinforced bond coat with protective chippings - SAMI
Tacking/Bonding Techniques

- Asphalt emulsion
 - *no solvent*

- Engineered for application
 - *low viscosity - uniformity*
 - *heavier residual - thin overlays*
 - *polymer-modified - better bond*
 - *additives - fast break*
 - *hardest of residual binder – tracklessness*
 - *fibers – cracking mitigation*
Surface Characteristics

- **Surface friction**
 - *usage of a good aggregate*
 - *skid number of 50*
- **Surface drainage**
 - *macro-texture depth of 0.6 to 1.0 mm*
- **Smoothness**
 - *placed with modern paving and compaction equipment*
- **Rutting defects**
 - *wheel tracking laboratory tested for rut resistance*
- **Rolling noise reduction**
 - *negative texture*
 - *short surface wave length (NMAS < 10 mm)*
 - *high surface voids*
Objectives & Constraints

Thin HMA systems

<table>
<thead>
<tr>
<th>Safety</th>
<th>Esthetics</th>
<th>Noise reduction</th>
<th>Anti-rutting</th>
<th>Density Graded Mixes < 8 mm</th>
<th>Thickness < 25 mm</th>
<th>Aggressive traffic</th>
<th>Rapidity of placement</th>
<th>Profiling capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>**</td>
<td>**</td>
<td>*</td>
<td>Dense Graded Mixes < 8 mm</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>****</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>SMA 0/6 mm</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>****</td>
<td>**</td>
<td>**</td>
<td>***</td>
<td>SMA 0/10 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>****</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>Novachip 0/6 mm</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>****</td>
<td>**</td>
<td>**</td>
<td>***</td>
<td>Novachip 0/10 mm</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>**</td>
<td>*****</td>
<td>*****</td>
<td>**</td>
<td>Low noise HMA systems</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

• Suitable for all volume highways
• Rapid operation
• No chip loss
• Resistant to mat damage caused by turning and braking
• Reshaping capacity
• High skid resistance
• Aggressive macrotexture
• Strong adhesion to existing pavement
• Reduced rolling noise
• Bond-coat seals existing surface