Pavement Surface Characteristics

Susan Tighe, PhD, PEng
Canada Research Chair, Norman W. McLeod Professor
Director, Centre for Pavement and Transportation Technology
http://www.civil.uwaterloo.ca/CPATT/

M. Alauddin Ahammed, PhD, PEng
Manitoba Infrastructure and Transportation

Amir Abd El Halimm PhD, PEng
Stantec Consulting
Key Theme Areas

• Climate Change Impacts on Infrastructure
• Sustainability Incorporated into Design, Construction, Maintenance, Management
• Investment balances: PRESERVATION & EXPANSION
• Make decisions: TECHNICAL, ECONOMIC, SOCIAL, ENVIRONMENTAL
• Allocate Budgets: SATISFY ORGANIZATION NEEDS, CUSTOMER REQUIREMENTS, PERFORMANCE EXPECTATIONS
Outline of Presentation

• Introduction
• Overview of surface texture, friction and noise
• Relevant past research
• Data collection, analysis and results
• Performance models and Pavement Management Systems
• Closing Thoughts
Introduction

• 189,000 highway crashes in Canada (2012)
 • Skidding: Up to 35% of wet accidents
 • Splash and spray: 10% of wet accidents
 • Both mainly depend on surface texture
 • Friction increase by 0.1: 13% wet accident reduction
• Anti-skid surfacing in UK: 35% wet accident reduction
 • Friction varies seasonally and reduces over time
 • Important measure of pavement deterioration
 • Increased risk of wet accidents
Introduction

• Increased texture for improved durable friction
• Improved safety and economy
• Noise is environmental pollutant
• Noise barriers: $0.6 to $3.0 million per km
• Not practical for urban roads: Sound escape path
• Noise reducing pavements: Possible economic alternative?
• Need to balance safety, cost, durability and comfort
Objectives of Research

• Overview of pavement surface characteristics and relevant research
• Examine various asphalt mixes and concrete texturization for macrotexture, friction and noise
• Determine effect of prior weather on seasonal surface friction variation
• Quantify long term surface friction and develop performance models
• Develop guideline for desirable (optimum) surface and incorporating into PMS
Surface Texture, Skid Resistance and Tire-Road Noise

Ranges of Texture and Anticipated Effects (PIARC 1987)
Pavement Texture

[Reference: NCHRP 2009]
Surface Friction Over Time

Seasonal and Long Term Skid Resistance Variations [TAC 1997]
Friction Factor and SN

The friction factor:

\[\mu = f = \frac{F}{L} \]

Where:

- \(f \) = friction factor
- \(F \) = frictional resistance force in the direction of travel
- \(L \) = reaction load perpendicular to the surface

Skid Numbers:

\[SN = 100 \times f = 100 \times \frac{F}{L} \]
Life Cycle Assessment

<table>
<thead>
<tr>
<th>Planning and Programming</th>
<th>Design</th>
<th>Construction</th>
<th>Maintenance, Preservation and Rehabilitation</th>
<th>In-Service Evaluation</th>
<th>End of Service Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Traffic and Environmental data information</td>
<td>• Information on materials, traffic, costs, environment, etc.</td>
<td>• Environment during construction</td>
<td>• Standards</td>
<td>• Recycling and reuse of materials for reconstruction</td>
<td></td>
</tr>
<tr>
<td>• Assess network deficiencies</td>
<td>• Design alternatives</td>
<td>• Specifications</td>
<td>• Treatments</td>
<td>• Salvage Value</td>
<td></td>
</tr>
<tr>
<td>• Budgets</td>
<td>• Analysis</td>
<td>• Contracts</td>
<td>• Schedules</td>
<td>• Records</td>
<td></td>
</tr>
<tr>
<td>• Establish priorities</td>
<td>• Optimization</td>
<td>• Construction operations</td>
<td>• Budget control</td>
<td>• Restoration</td>
<td></td>
</tr>
<tr>
<td>• Schedule projects</td>
<td>• Sustainability</td>
<td>• Quality control/quality assurance</td>
<td>• Records</td>
<td>• Zero Waste Management</td>
<td></td>
</tr>
<tr>
<td>• Priorities</td>
<td>• User costs</td>
<td>• Environment during construction</td>
<td>• Periodic monitoring of structural adequacy, roughness, surface distress, and surface friction</td>
<td>• Assess performance</td>
<td></td>
</tr>
</tbody>
</table>

"Working" Management

[Database]

[Research]

[Loop]
CPATT Data Collection Tools

- Sand Patch Texture
- ASTM Skid Trailer
- Portable Skid Tester
- Close Proximity Noise
- In-vehicle Noise
- Pass-by Noise
CPATT Data Collection Tools

ARAN laser

Impedance tube

Reverberation chamber
CPATT Data Collection Tools

15 concrete surfaces in CPATT laboratory: Surface texture and skid resistance
CPATT Test Track
Regional Municipality of Waterloo’s Waste Management Site
CPATT Test Track

7 concrete surfaces at CPATT landfill test track

5 asphalt surfaces at CPATT landfill test track
Collection of Data
Collection of Data
Collection of Data

- 2008 Larger Sample Size Frequent Testing
- 2009/2010 (24 Sections)
 - Windsor, London, Kitchener, Toronto and Ottawa
 - Montreal and Laval area (2010)
- Tested in conjunction with ACPA and CAC
- Equivalent tire-pavement noise dB, Leq
- Maximum tire-pavement noise dB, Lmax
- CPATT Noise Testing equipment
Collection of Data

- Concrete Pavement Longitudinal Tining, PCCP LT
- Concrete Pavement Transverse Tining, PCCP TT
- Concrete Pavement Random Tining, Random TT
- Stone Mastic Asphalt, SMA
- Superpave 12.5 FC2
- Hwy3, Hwy 401, Hwy 410, Hwy 417
- Tested at 100km/hr (2009, 2010)
- 2009 recorded as peak values at specific frequency (not as a sum logarithm) – (SPL A)
- 2010 Leq or Lmax at specific frequency (SPL B)
Noise Data Lmax

Ontario Sections Lmax CPATT

Test Sequence and Pavement Type

Lmax in dB

Noise Comparison Lmax

ONT Lmax Data 2009 Vs. 2010 SPL A

<table>
<thead>
<tr>
<th>CAC Test Sequence 2010</th>
<th>Lmax 2009</th>
<th>Lmax 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>99.2</td>
<td>96.7</td>
</tr>
<tr>
<td>3</td>
<td>101.6</td>
<td>102.5</td>
</tr>
<tr>
<td>4</td>
<td>101</td>
<td>103.1</td>
</tr>
<tr>
<td>9</td>
<td>100.8</td>
<td>102.3</td>
</tr>
<tr>
<td>10</td>
<td>104</td>
<td>104.1</td>
</tr>
<tr>
<td>11</td>
<td>98.9</td>
<td>97.5</td>
</tr>
<tr>
<td>12</td>
<td>98.7</td>
<td>99.1</td>
</tr>
<tr>
<td>13</td>
<td>96.2</td>
<td>95.2</td>
</tr>
<tr>
<td>14</td>
<td>98</td>
<td>96.2</td>
</tr>
</tbody>
</table>

- Lmax (dB): 90, 92, 94, 96, 98, 100, 102, 104, 106
Analysis of Data

- SP, SMA and Fine SP absorb 6.3%, 7.5% and 8.5% of sound
- Textured concrete absorb 5-6% of sound
- 10 km/h speed increase: 1.5-1.6 dBA increase (pass-by and in-vehicle levels)
- Variation with age could not be determined: Variation in actual surface texture/condition
Testing Challenges

- Vehicle Configuration and Tire Configuration (commercial van, others use Chevy Malibu passenger car)
- Tire Types and Pressures: Tread pattern and Size
- Nose Cone versus Windscreen (used nose cone others use windscreen)
- Quality Control Checks (trained staff)
- Test Temperatures
- Sample versus Continuous Measurement (compare only similar measurements)
- Fixture Variability (microphone same height)
Analysis of Data

- Acceptable maximum: NAC or public perception
- No guideline in Canada/US. Being suggested as:

<table>
<thead>
<tr>
<th>Overall Noise Level with Respect to the Maximum Acceptable Limit</th>
<th>Pavement Classification</th>
<th>Action by the Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>>5 dBA higher</td>
<td>Very noisy</td>
<td>Actively consider for surface change/treatment to reduce the noise level</td>
</tr>
<tr>
<td>3-5 dBA higher</td>
<td>Noisy</td>
<td>Candidate for surface change/treatment</td>
</tr>
<tr>
<td>Within ± 2 dBA</td>
<td>Normal</td>
<td>Check at 2-year interval for potential increase</td>
</tr>
<tr>
<td>3-5 dBA lower</td>
<td>Less Noisy</td>
<td>Check every 5-year for potential increase</td>
</tr>
<tr>
<td>>5 dB lower</td>
<td>Noise Reducing</td>
<td>No action is needed</td>
</tr>
</tbody>
</table>
Closing Thoughts

• Surface texture is important and should be measured
• Complex testing requires precision, training and good understanding of physics, pavements, field testing
• Needs to be included in the Pavement Management System
Acknowledgements

• Dr. John Vanderkooy, University of Waterloo
• Peter Chan, Shila Kanal, Eugene Kim, Jodi Norris: CPATT
• Ministry of Transportation Ontario: Chris Raymond, Tom Klement (MTO)
• Cement Association of Canada: Rico Fung
• American Concrete Pavement Association: Larry Scofield
• NSERC, MTO, CAC and CFI (financial support)
Transportation Association of Canada
2013 Pavement Asset Design and Management Guide
Questions/Comments

Susan L. Tighe, PhD, PEng
Director, Centre for Pavement and Transportation Technology
Professor, Canada Research Chair, Norman W. McLeod Chair
Civil and Environmental Engineering
University of Waterloo
sltighe@uwaterloo.ca or 519-888-4567 x 33152